From molecular dynamics to hydrodynamics: a novel Galilean invariant thermostat.
نویسندگان
چکیده
This paper proposes a novel thermostat applicable to any particle-based dynamic simulation. Each pair of particles is thermostated either (with probability P) with a pairwise Lowe-Andersen thermostat [C. P. Lowe, Europhys. Lett. 47, 145 (1999)] or (with probability 1-P) with a thermostat that is introduced here, which is based on a pairwise interaction similar to the Nosé-Hoover thermostat. When the pairwise Nosé-Hoover thermostat dominates (low P), the liquid has a high diffusion coefficient and low viscosity, but when the Lowe-Andersen thermostat dominates, the diffusion coefficient is low and viscosity is high. This novel Nosé-Hoover-Lowe-Andersen thermostat is Galilean invariant and preserves both total linear and angular momentum of the system, due to the fact that the thermostatic forces between each pair of the particles are pairwise additive and central. We show by simulation that this thermostat also preserves hydrodynamics. For the (noninteracting) ideal gas at P = 0, the diffusion coefficient diverges and viscosity is zero, while for P > 0 it has a finite value. By adjusting probability P, the Schmidt number can be varied by orders of magnitude. The temperature deviation from the required value is at least an order of magnitude smaller than in dissipative particle dynamics (DPD), while the equilibrium properties of the system are very well reproduced. The thermostat is easy to implement and offers a computational efficiency better than (DPD), with better temperature control and greater flexibility in terms of adjusting the diffusion coefficient and viscosity of the simulated system. Applications of this thermostat include all standard molecular dynamic simulations of dense liquids and solids with any type of force field, as well as hydrodynamic simulation of multiphase systems with largely different bulk viscosities, including surface viscosity, and of dilute gases and plasmas.
منابع مشابه
Advantages of a Lowe-Andersen thermostat in molecular dynamics simulations.
The Lowe-Andersen thermostat is a momentum conserving and Galilean invariant analog of the Andersen thermostat. Like the Andersen thermostat it has the advantage of being local. We show that by using a minimal thermostat interaction radius in a molecular dynamics simulation, it perturbs the system dynamics to a far lesser extent than the Andersen method. This alleviates a well known drawback of...
متن کاملSupporting Information for Adaptive resolution simulation of MARTINI solvents
The Langevin thermostat does not reproduce the correct hydrodynamics, i.e., the hydrodynamic interactions are unphysically screened. To correctly describe hydrodynamic interactions, we have to use the DPD thermostat1,2 instead. The DPD thermostat satisfies Newton’s third law by construction and owing to mass, momentum and temperature conservation, hydrodynamics is also properly reproduced.3 We ...
متن کاملAn alternative approach to dissipative particle dynamics
– We describe a simulation method based on combining the ideas behind Andersen’s thermostat and dissipative particle dynamics (DPD). The result is a Galilean invariant thermostat that conserves momentum and enhances viscosity. It therefore displays the same characteristics as DPD. Our method differs primarily in that it satisfies detailed balance by construction. If a simple scheme is used to s...
متن کاملConsistent Temperature Coupling with Thermal Fluctuations of Smooth Particle Hydrodynamics and Molecular Dynamics
We propose a thermodynamically consistent and energy-conserving temperature coupling scheme between the atomistic and the continuum domain. The coupling scheme links the two domains using the DPDE (Dissipative Particle Dynamics at constant Energy) thermostat and is designed to handle strong temperature gradients across the atomistic/continuum domain interface. The fundamentally different defini...
متن کاملEntropy and Galilean invariance of lattice Boltzmann theories.
A theory of lattice Boltzmann (LB) models for hydrodynamic simulation is developed upon a novel relation between entropy construction and roots of Hermite polynomials. A systematic procedure is described for constructing numerically stable and complete Galilean invariant LB models. The stability of the new LB models is illustrated with a shock tube simulation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 122 11 شماره
صفحات -
تاریخ انتشار 2005